2024-05-27-Portfolio Optimization
投资组合优化
General Idea
- Financial optimization:
- Variables: Amounts invested in each asset
- Constraints: budget, investment per set, minimum return
- Objective: Maxize proft, Minimize risk
- Machine learning:
- Variables: Model parameters
- Constraints: Prior information, parameter limits
- Objective: Minimize prediction error
- Method:
- least squares
- linear optimization
- convex optimization
- Basic terms:
- allocation weights:
- 总资产:V
- w: n维向量->记录给每个资产分配的权重
- Property:
$V_(w_j)$ dollar value hold in asset j
w中分量线性和为1(齐次)
$w_j < 0$ means short positions(borrow)
- Return over a period:
- Asset return: $\hat{r_t}$ the farctional return vector of each asset
- Portfolio return: $r_t$ = $\hat{r_t^T}w$ the return for the entire portfolio over period t
- Total porofolio value after a period
$$ V_{t+1} = V_t + V_t\hat{r_t^T}w = V_t(1+r_t)$$
- allocation weights:
Linear optimization
- Average return:
$$ avg(r) = \frac{\sum_{t=1}^T{R_t}}{T} = \mu^Tw $$- Average return calculate the average return value over period T;
- Additionally, $\mu$ is n-dimensional vector, representing the average return of each asset,it can be calculated by $$\mu = \frac{R^T}{T} \text{and $R^T$ is a n*T matrix, including all assets’ return rate over the whole period} $$
-
1-nrom Risk Approximation(1-范数风险近似):
Notice: It is no longer standard deviation(标准差)
$$||r-avg(r)1||_{\frac{1}{T}}$$ - Risk-Return Objective:
Objective = $\mu^Tw - \frac{\sum_{t=1}^T(R_tw-\mu^Tw)^2}{T} + \text{(trade off parameter)}$
$\frac{\sum_{t=1}^T(R_tw-\mu^Tw)^2}{T}$ is the risk evaluation over time