#Math241

Coordinate Systems

Setup

通过 Linear Mapping 换系:一个正交矩阵用来替换正交基,一个平移向量确定原点
769655e7b541359fba91f848f438e2e.png
正交矩阵的基本性质

  • 模长不变

$$ |Ux| = |x| $$

意味该变换能够保持距离不变

$$ d(x,y) = |x-y| = |Ux’-Uy’|= |x’-y’| $$

  • $U、U^{T}$

$$ UU^{T} = I_{n} $$

  • $\det(U)=\pm1$

f0982f8b912b4d9d5a4f02865bc62c5.png

Motion in Space: Velocity and Acceleration

Velocity, Speed and Acceleration

注意速度、速率与加速度取决于对曲线参数的选取,而曲率、曲线长度、转矩则独立于曲线参数的选取

  • Velocity: 直接考虑对点的运动轨迹求导,即可得出运动的顺势速度(包括方向与大小)
    7e94260223cb37124542c1e910fec1f.png
  • Speed: 即为速度向量的模长

$$ |v(t)|=|r’(t)|=\frac{ds}{dt} $$

  • Acceleration

$$ a(t)=v’(t)=r’‘(t) $$

  • 联系:牛顿运动定律: $F(t)=ma(t)$
    e223cdd16b41098b2ed10c486fb04e4.png
  • Projectile Motion 抛体运动 (考虑物理方法即可)

Tangential and Normal Components of Acceleration

$$ \begin{align} & T(t) = \frac{r’(t)}{|r(t)|} = \frac{\mathrm{v}}{v}
& a = \mathrm{v}’ = (vT)’ = v’T + vT’
& \kappa = \frac{|T’|}{|r’|} = \frac{|T’|}{v}, T’=|T’|N=\kappa vN
& a = v’T + \kappa v^{2}N
& a = a_{T}T+ a_{N}N, a_{T}=v’, a_{N}=\kappa v^{2} \end{align} $$

其中: 可以分别利用点乘计算相应的系数(对于 T,N 的便捷计算则可以参考先后求一二阶导后考虑正交化)

$$ \begin{align} & a_{T}=v’=\frac{\mathrm{v}\cdot a}{v}= \frac{r’(t)\cdot r’’(t)}{|r’(t)|}
& a_{N} = \kappa v^{2}= \frac{|r’(t)\times r’’(t)|}{|r’(t)|} \end{align} $$

Polar form of Conics(圆锥曲线的极坐标形式)

二次型
0839f17a025c0464452e15e148823fa.png
8779e33b90ed621cbf11659554d8a91.png

极坐标形式:非退化的二次曲线到焦点与到准线的距离之比为定值
d7d48dd9377efb3ce5af7f92126df97.png

  • 离心率 $e =\frac{\sqrt{ a^{2}\mp b^{2} }}{a}$
  • 焦准距
  • 半通径 $e=\frac{l}{p}$
    219e591ab915306a2d433d3351d76b9.png

Kepler’s Laws of Planetary Motion 开普勒行星运动定律

6c2e69687998e91ee72e69f2526d301.png
证明

  • 首先证明行星的运动轨迹为平面
    r 与 a 的叉乘为 0 -> 角加速度为 0 ->角动量为定值
    这样我们即可得到该运动轨迹所对应确定平面的角动量
    b2c1abcd104aad4fef3e972ea34a6af.png

94be178adef7a6bb5054cd6451dae72.png

59dc1518bccec9f2108ce5e02051f30.png

e080791fc97d36c85238f28920c00f6.png

注意 e 与 l 的取值

$$ e = \frac{c}{GM} , l = \frac{h^{2}}{GM} $$

abaa00787c053c052b4a0e39406fcd9.png
17fe287f446c1bc1cf4cff0778ba3a4.png