Sets and Functions
#Math213
Sets
Basic
- Concept: A set is an unordered collection of objects. The objects are called elements or members.(强调无序性)
-
Representation:
-
Subset:
-
Size-Carinality 集合的势
- Power Set: 集合所有子集的集合
Tuple and Cartesian Product
-
Tuple:Tuple 强调元素的有序性
- Cartesian Product: 各集合元素的有序组合
- Relation: **A subset of of the Cartesian product $A \times B$ is called a relation from the set A to the set B
Operation
- Union:
- Intersection
- Difference
- Complement
Identities
Function
Basic
-
Concept
domain: 定义域
codomain: 上域
range:值域
$f(a)=b$: a 为 preimage, b 为 image -
Type
- injective: 单射函数,不同的像对应不同的原像
one-to-one
- Surjective: 满射函数,对任意的像都有原像与之对应
即陪域中每个元素都被覆盖
onto
- Bijective: 双射函数,既为单射又为满射
one-to-one correspondence
证明 Bijective Function: 证明单射和满射即可
- injective: 单射函数,不同的像对应不同的原像
- Inverse Function
Composition of Functions
Concept
对于双射,映射及其逆映射的复合即为 Identity Function
Special Function
- Floor and Ceiling Function
- Factorial Function
Sequence
Definition
还可利用递归形式定义
确定初始项,然后即可根据后项与前项之间的关系定义
Common Types
- Geometric Progression: 等比
- Arithmetic Progression: 等差
Cardinality
Countable
The elements of the set can be enumerated and listed
考察集合的势与正整数集势的关系
Core: check one-to-one correspondence 或者寻找一种合理的排列方式
Notice: 正有理数集可数,考虑控制分子分母的和,然后逐项列举
注意有理数集,代数集可数
Uncountable Set
$\mathbb{R}$ , $(0,1)$ 不可数,康托尔对角线
证明集合的势相等:考虑构造两者相互的 one-to-one correspondence
Computable
P: 表示 Power set,即集合所有子集构成的集合