#Math213

Terms

Logic

Logic is the basis of all mathematical reasoning:

  • Syntax of statements
  • The meaning of statements
  • The rules of logical inference

Proposition(命题)

b93ed84aff32d96429aeb7f6e15044f.png
注意:

  • 命题不能是一个疑问句或者命令;
  • 命题要么真要么假,不能涉及变量,命题一定能判断真假

Compound Propositions: Combinations of several propositions

Logical Connectives

81819f3d30676bbc45ed3fda3d5fe88.png

  • 注意 p->q 的各种表述unless 与 only if
    注意 p->q 准确应理解为 p 蕴含于 q (Not p; p implies q)

7689e29824a605738115c0dc3712d1f.png

  • 逆命题 (converse),反命题 (inverse),逆否命题 (contrapositive)
    3bfd9d49ba9db94d39429da60e96a93.png
    7388d653a7647ba51b7506a531e27c2.png
  • Biconditional 的表述
    c348ee3a9929b698e6e17519c166534.png

Propositional Application and Equivalence

Application

57f34bc414859a8500701558dcd3c5b.png

Equivalence

Specific Terms

  • Tautology: 恒真
  • Contradiction: 恒假
    2b61c86d7424bd49611711415fa77b6.png

Logical Equivalences

a6de9d40cd7ffcdf9b704fd289f88d2.png
等价 ->Truth Table 上两个命题同真同假即可
等价的证明

  • truth table 上证明同真同假
  • 直接用逻辑算符证明

Boolean Logic
f2ce8ab7cc70572c301bdc883e81dfb.png
c5a47fcf5fa890ab30207a13121e8a0.png
62bb23385d5f6ee0f794dbe5503d9e5.png
d03449cec9cdd2b899015952a5622b6.png

Proof

  • Logical Expression
  • Truth Table

Limitation of Propositional Logic

引入 Predicates(断言/谓词) 与 quantifier(量词)