#Math213

Sets

Basic

Tuple and Cartesian Product

Operation

Identities

77fbecd60c5911d0c34e5c7f711ceab.png
9ed865c5859bce3020dcac748d5920e.png
fcc24455dca4f899efe4cdb25ceb66b.png

Function

Basic

c44a9da43b9349ded1c5ce5c9523068.png

  1. Inverse Function
    45e6e3184f15c0a73ea9134cf41975a.png

Composition of Functions

Concept
738f3aa9300d49fd8d4e3bee25693be.png

对于双射,映射及其逆映射的复合即为 Identity Function
ff195719aaf95196e211096d1491bb1.png

Special Function

Sequence

Definition
b05311c96a40f2e7ece143e8a16bf39.png
还可利用递归形式定义
efae723fb4fdaa39b71075ffa72dea2.png
确定初始项,然后即可根据后项与前项之间的关系定义

Common Types

Cardinality

Countable

The elements of the set can be enumerated and listed
376caa6de6f2aa9006e9a1e678a2120.png
考察集合的势与正整数集势的关系
255eac2b42d769445cc1162e039075c.png

Core: check one-to-one correspondence 或者寻找一种合理的排列方式

Notice: 正有理数集可数,考虑控制分子分母的和,然后逐项列举
1d7a6864b584b7bbc24926ed1308649.png
17191638b8c4149e7f04443601c764d.png

注意有理数集,代数集可数

Uncountable Set

$\mathbb{R}$ , $(0,1)$ 不可数,康托尔对角线
23bcf85deb072e9b08cb5c97164b908.png

证明集合的势相等:考虑构造两者相互的 one-to-one correspondence
c33820f9a8b3d37b9a49ee7f258ee8a.png

Computable

13bf3939680722c446c2efd47571aa0.png

P: 表示 Power set,即集合所有子集构成的集合