#Math213

Mathematical Induction

73e7bc415cd73f4b20dc8558050f2fb.png
11f1c642da709d3e6e049d8b49e13c1.png
注意

Recursion

Towers of Hanoi Problem 汉诺塔

$$ \begin{align} & M(n)\text{ denotes the number of disk moves needed for n disks}
& M(1) = 1
& M(n+1) = 2M(n)+1 \

\end{align} $$

Recurrence

Linear Recurrences

相关概念

$$ a_{n} = f(a_{n-1},\dots ,a_{n-k}) = s_{1}a_{n-1}+\dots+s_{k}a_{n-k}+f(n) \text{ 其中对应的s与f(n)均为实数} $$

  1. 一阶线性递归

$$ T(n) = f(n)T(n-1)+g(n) $$

First Order: 递归表达式只出现前一阶情况
Linear: 出现的递归式均为一次

d3269386e6b24206d4ccee917503feb.png
Theorem

$$ \sum_{i=1}^{n}ix_{i}^{i} = \frac{nx^{n+2}-(n+1)x^{n+1}+x}{(1-x)^{2}} $$

  1. 齐次线性递归特征根方程

n 阶齐次线性递推数列系数为常数(简称线性递推数列)是指形如:

$$ a_{n}=c_{1}a_{n-1}+c_{2}a_{n-2}+⋯+c_{n-1}a_{n}+c_{n}a_{0} ​ $$

的数列,其中 $c_{1},c_{2},\dots,c_{n}$ ​为常数系数,且是齐次的,即右边没有常数项。
特征根方程的求解

$$ a_{n} = A_{1}r_{1}^{n} + A_{2}r_{2}^{n}+\dots A_{n}r_{n}^{n} $$

$$ (A_{1}+A_{2}n+\dots A_{k}n^{k-1})r^{n} $$

  1. 线性非齐次递归
    形如:

$$ a_{n} = \sum_{i=1}^{k}c_{i}a_{n-i} + F(n) $$

线性非齐次递归解的形式形如特解与其对应的线性齐次递归的通解之和

7a760cac7f739eae939a5f13d95f071.png

如何寻找特解 ->无一般通解形式,但可对特殊情况进行分类讨论

对于特殊情况,注意再待定系数前乘上对应根的重数次幂 n

[!warning] 注意

Growth Rate of Solutions to Recurrences

Divide and conquer algorithms

Problem Form
124672e37e2709232322d1df14681d4.png

Binary Search
f40fbf5fe1e1e50a112b8861a73814b.png
8eb864339694cb7c1d7ae74805c002f.png

Growth Rate Type

Theorem
000b36fd5e267a8fdf3bdf6ba431160.png

$$ T(n) = a^{\log_{2}n}T(1)+n\sum_{i=0}^{\log_{2}n-1}\left( \frac{a}{2} \right)^{i} $$

$$ n\sum_{i=0}^{\log_{2}n-1}\left( \frac{a}{2} \right)^{i} = \frac{n\left( 1-\left( \frac{a}{2} \right)^{\log_{2}n} \right)}{1-\frac{a}{2}} $$